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In this paper, we investigate the effects of increasing pressure, P from 0 to 150 GPa on elastic properties as reflection 

coefficients, acoustic signatures, acoustic wave velocities, V, and elastic moduli, M in isotropic and anisotropic MgO. It is 

found that, at a given pressure, all the investigated acoustic parameters depend on crystallographic orientations. Moreover, 

the analysis and quantification of pressure effects lead to the determination of semi-empirical formulas applicable to all 

acoustic parameters with different characterising constants. These relations for propagating Rayleigh, longitudinal and 

transverse waves velocities Vi and for Young’s (shear) modulus M are of the form:   Vi=Vio+Aiexp(P/ti) and  Mp=Mpo+Bpexp(-

P/tp), respectively; where Ai, ti, Bp, tp are characteristic constants for velocities and elastic moduli; the subscript (o) 

represents the corresponding parameters at zero pressure; the subscripts (i = R, L, T) represent the propagating Rayleigh, 

longitudinal and transverse waves. These formulas are important for the prediction of elastic parameters at any given 

pressure and vice versa. 
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1. Introduction 

 

 MgO, one of the oldest ceramics, is receiving 

renewable interest due to the development of new growth 

techniques and the increasing potential of this material in 

numerous modern applications in various fields as 

semiconductors, nuclear power, steel industry, etc…. This 

ceramic material may exist in isotropic or anisotropic 

structural forms as a result of preparation conditions and 

techniques. The structural simplicity and broad spectrum 

of stability at high pressure-temperature of MgO have 

attracted a spectacular evolution in the number of 

applications and the high performances of such a ceramic 

material. Therefore, a fine comprehension, a continuous 

understanding of its structure  and the means of obtaining 

it, in a reliable, robust and profitable way, are required. 

 Mechanically, MgO is described by its density as well 

as its elastic moduli [1, 2] that can be characterized via 

static or dynamic methods. The latter, mainly ultrasonic, 

are nondestructive; they require the knowledge of density, 

 and velocities. However, these values become 

dispersive if the material is kept under pressure. In this 

context, we investigate not only elastic properties of 

isotropic MgO but also the influence of pressure and 

anisotropy on these properties (reflection coefficients, 

acoustic signatures, Rayleigh velocities, elastic constants).  

 

 

2. Calculation Procedure and Conditions  

 

The details of calculation procedure, which could be 

found elsewhere [3-5], consists of several steps: (i) 

calculation of the reflection coefficient R(), (ii) 

calculation of the acoustic signature, V(z), (iii) treatment 

of V(z) by fast Fourrier transform, FFT, (iv) determination 

of the velocity of propagating modes and (v) repetition of 

all previous steps (i-iv) for each value of the pressure and 

every crystallographic orientation. 

The simulation conditions are those usually used 

experimentally in the case of a reflexion scanning acoustic 

microscope: a half opening angle of lens of 50°, an 

operating frequency f = 140 MHz and water as a coupling 

liquid whose wave velocity, Vliq= 1500 m/s and density, 

1000 kg/m
3
The MgO acoustic parameters used in this 

investigation are listed in Table 1 [6]. 
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Table 1. Acoustic parameters (longitudinal velocity, VL, transverse velocity, VT) of isotropic and anisotropic MgO [6] 

 

 P 

(GPa) 

 

(g /m
3
) 

MgOiso MgO<100> MgO<110> MgO<111> 

VL (m/s) VT (m/s) VL (m/s) VT (m/s) VL (m/s) VT (m/s) VL (m/s) VT (m/s) 

0 3486 9580 5910 9140 6310 9730 5360 9920 5690 

5 3590 9920 6040 9650 6290 10010 5700 10120 5900 

10 3685 10250 6200 10140 6300 10280 6010 10330 6140 

20 3856 10810 6450 10970 6320 10770 6320 10710 6540 

40 4144 11740 6810 12370 6330 11630 6330 11370 7200 

60 4386 12440 7060 13470 6300 12300 6300 11880 7740 

80 4596 13050 7250 14390 6290 12910 6290 12370 8150 

100 4785 13590 7400 15240 6230 13440 6230 12790 8560 

125 4998 14130 7550 16140 6160 14000 6160 13200 9000 

150 5189 14160 7690 16890 6110 14450 6110 13540 9400 

 

 

3. Investigation of pressure effects on  

    isotropic MgO  

 

3.1 Pressure effects on R() 

 

To show the influence of pressures on reflection 

coefficients, R(), we first calculated these functions at 

various pressures (0 – 150 GPa) for isotropic MgO; the 

obtained curves are displayed in Fig. 1. For a better clarity 

of curve representation and since R() is a complex 

function, we separated the amplitude curves (Fig. 1a) from 

those of the phase (Fig. 1b). Then, for different pressures, 

we superposed the real parts and the imaginary parts as a 

function of the incidence angles, i. 

From fig. 1a, representing the amplitude of R() as a 

function of incidence angle, i, one can clearly observe: (i) 

a first fluctuation in amplitude when the angle of incidence 

reaches the values of critical longitudinal angles, L, (ii) a 

shift in L towards lower values when the pressure 

increases, (iii) a second increase in amplitude when the 

angle of incidence reaches the values of the critical 

transverse angles, T, (iv) between L  and T the 

amplitude of R() remains constant and (iv) beyond T the 

amplitude of R() increases to reach unity corresponding 

to total reflection. 

From fig. 1b, representing the phase of R() as a 

function of i; it can easily be noticed that a 2π transition 

(for P = 0 GPa) is obtained. This transition occurs at the 

critical angle, R, that corresponds to the Rayleigh mode, 

which is the most important one under the present 

simulating conditions. Thus, Rayleigh mode dominates all 

other modes leading to the fact that the longitudinal 

critical angle, L, is not very noticeable. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1. Amplitude (a) and phase (b) of reflection 

coefficients as a  function of  incidence angles at different  

                 pressure values for isotropic MgO. 

 

It can also be seen that the amplitude of the transition 

in Rayleigh mode phase becomes less than the usual 2 

value as the pressure increases. Whereas, the position, i.e., 

the value of R moves towards lower values with 

increasing P (a similar behaviour to that noticed with L in 

Fig. 1a). Moreover, it is clear that all modes are generated 

with angles lower than 20°. These critical angles strongly 

depend on the simulation conditions, in particular coupling 

liquid densities [7]. 

 

3.2 Pressure effects on V(z) 

 

Acoustic signatures can be obtained experimentally, 

via a scanning acoustic microscope, by recording the 

variation of amplitude, V, of the signal as a function of 
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displacement, z, from the lens towards the sample. These 

signatures, which depend on R(), can also be calculated 

from the spectral angular model [8].The curves, thus 

calculated, at various pressure values are represented in 

Fig. 2a for the isotropic material, MgOiso. It is clear that all 

the curves of V(z) present an oscillatory behaviour, with a 

spatial period z, due to constructive and destructive 

interferences between propagating modes. It is noted that, 

as the pressure changes, V(z) curves differ in amplitudes 

as well as in periods, z. In amplitudes, the curves 

attenuate more rapidly for higher pressures, see e.g., P = 

150 GPa. In periods, we observe an initial shift of 

successive maxima which leads to larger periods for 

higher pressures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Acoustic signatures (a) and fft spectra  (b) for 

isotropic MgO, at different pressure values. 

 

 

The FFT spectral analysis of these periodic V (z) 

curves is shown in Fig. 2b. These spectra are characterized 

by a principal peak representing the most dominating 

mode which is that of Rayleigh, under the present 

conditions. However, the efficiency of this mode, 

represented by its height [7], is more important for the 

highest pressure of 150 GPa. Moreover, a small shift for 

the principal ray is observed putting into evidence the 

differences in spatial periods z obtained in V(z) curves. 

 

 

4. Study of anisotropy effects  

 

In order to investigate anisotropy effects on elastic 

properties of MgO we considered different orientations 

(Table 1): MgO<100>, MgO<110> and MgO<111>. It should be 

noted that we determined, for all these cases, reflections 

coefficients as well as acoustic materials signatures at 

different pressure values. Since the behaviours of obtained 

results are identical and reproducible, we only report some 

representative curves.  

Typical obtained results of R() for isotropic and 

anisotropic MgO are illustrated in Fig. 3 for uncharged (P 

= 0 GPa; Fig. 3a) and maximally charged (P = 150 GPa; 

Fig. 3b) in terms of modulus ( - - - ), referred to the left 

hand side axis and phase (
_____

) referred to the right hand 

side axis, as a function of incidence angles.   

It is clear that all critical angles, L, T, and R 

corresponding to longitudinal, transverse and Rayleigh 

modes, respectively, differ from one orientation to the 

other. They also show significant changes between 

charged and uncharged materials as well between isotropic 

and anisotropic MgO.  

The calculated acoustic signatures, V(z), for isotropic 

MgO and  MgO<100>, MgO<110> and MgO<111> are shown in 

Fig. 4a (P = 0 GPa) and Fig. 4b (P = 150 Gpa). The effects 

of pressure and anisotropy can clearly be seen as 

discrepancies between amplitudes and z periods in V(z) 

curves. 

 

 

5. Quantification of pressure effects on  

    acoustic parameters 

 

 

5.1. Rayleigh velocity dispersion with pressure 

 

It is well established that the spatial period z is 

related to Rayleigh velocity by the expression via the 

following relation [5]: 

 

2)
2

1(1
zf

V

V
V

liq

liq

R




                     (1) 

 

Hence, any shift in the position of principal ray, z, in 

FFT spectra leads a variation in the corresponding 

Rayleigh velocity, VR. Therefore, the above mentioned 

observations with pressure and anisotropy effects can be 

quantified through the determination of Rayleigh 

velocities, VR, in every case. This is justified by the fact 

that such velocities depend on periods z which are a 

consequence of the periodic behavior of V(z) curves; the 

latter being dependent on R(). 
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Figure 3. Reflection coefficients as a function of incidence angles 

for isotropic and anisotropic MgO; (a) P = 0 GPa and (b) P = 

150 GPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. V(z) curves for isotropic and anisotropic MgO; (a) P = 0 

GPa and (b) P = 150 GPa. 

 

The deduced VR values are better illustrated in Fig. 5 

as a function of pressure. It can be noticed that there is a 

sharp initial increase of VR up to P = 80 GPa followed by 

slower dependence. This variation is due to the crystalline 

structure of MgO which becomes more compact by 

compressing it. As the pressure increases, the atoms get 

closer which leads to a better wave propagation initially; 

whereas, for higher pressures the atoms cannot get too 

close leading to a kind of velocity saturation.  

In order to analytically quantify such behaviours, we 

deduced a relation between Rayleigh velocity and 

pressure, via curve fitting, of the form:  
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Fig. 5. Dispersion of Rayleigh velocity with pressure; the 

continuous line (____) represents the best fit. 

 

It should be noted that similar behaviours were 

deduced for longitudinal and transverse velocities; the 

following relations were also deduced: 

 

)
105

(

647616108

P

L eV



            (3) 
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A close look at the above relations shows clearly that 

they all follow the same variations that take the following 

analytical form:  
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with the subscript (i = R, L, T) representing the 

propagating Rayleigh, longitudinal and transverse mode, 

respectively, and Ai as well as ti being characteristic 

constants. 

 

5.2. Elastic constant variations with pressure 

 

Elastic constants can be expressed in terms of 

according to propagating wave velocities VT, VL and/or VR 

[9-11]. Thus, we calculated the Young’s modulus, E, and 

shear modulus, G, for MgO under various pressures, by 

using the following familiar formulas: 
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2

1 TVG     (7) 

 
2

2 3 RVE     (8) 

 
2

2 54.1 RVG     (9) 

 

Typical obtained results are plotted in Fig. 6 for 

Young’s modulus as a function of pressure; similar 

behavior was also obtained for shear modulus.  

 

 

 

 
 
 
 
 
 
 

 

 

 

 
 

Fig. 6. Pressure effects on Young’s modulus e1 (○, eqn. 6) 

and e2 ( □, eqn. 8); the continuous line (____) represents the 

best fit. 

 

It is clear that as the pressure increases we notice an 

initial sharp increase followed by a slower variation. In 

fact, when the pressure applied to MgO increases from 0 

to 150 GPa, E increases from 302 to 800 GPa and the 

shear modulus from 116 to 308 GPa.  The curve fitting led 

to an exponential variation similar to that of velocities; it 

was found that: 
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The above relations of elastic moduli, M, (Young’s or 

shear modulus) follow similar variations that take the 

following form:  

)(

0

tp

P

ppp eBMM


                         (12) 

 

where the subscript (0) represents the corresponding 

parameter at a null pressure, and Bp , tp are characteristic 

constants for elastic moduli. These relations are of great 

importance in the prediction of specific applications; it 

would be possible to predict the stress that the device 

should undergo by just knowing its elastic parameters and 

vice versa. 

   

 

6. Conclusions 
 

In this work, acoustic parameters of isotropic and 

anisotropic MgO were studied under various pressure 

values (0-150 GPa). Elastic parameters (reflection 

coefficients, acoustic signatures, Rayleigh velocities, 

Young’s modulus and shear modulus) were calculated for 

all cases. It has been shown that these parameters change 

with increasing pressure. The variations of velocities and 

elastic constants were expressed by exponential semi-

empirical relations. The importance of these formulas lies 

in the prediction of elastic parameters for any given 

pressure and vice versa. 
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